Blurred map of BOOST domains showing 212 applications in 27 countries.

About BOOST:

Every year, Suffolk Technologies welcomes the biggest innovators in the Architecture, Engineering, Construction, and Operation (AECO) space for an intense 6-week accelerator program, exposing early-stage entrepreneurs to every facet and detail of the built environment ecosystem. This year, in our fourth edition of the program, we selected seven companies and have been excited to see them progress through challenges they face as founders and technologists in the built world.


BOOST 4 received 200+ applications from 27 countries this year, more than twice the number of applications than when the program started in 2020. The applicants touched on all aspects of the built environment, with a strong showing across six key themes including artificial intelligence, supply chain efficiency, informed sustainability, field-focused digitization, design optimization, and workforce productivity.


The seven companies selected to participant in this year’s cohort, AGORUS, Emidat, Exodigo, Hammr, KayaAI, Sitelink, and Trunk Tools, are building solutions across these six themes and improving their products and go-to-market strategies with the support of Suffolk Technologies and our 22 industry partners.


Talk to me about the themes…


Artificial Intelligence

The question is not if artificial intelligence (AI) can help change the way we build, but rather how it will affect our industry. AI has already begun to transform our industry significantly – new technologies can automate tasks such as checking 2D design documentation for discrepancies, ensuring code compliance, and identifying coordination clashes. Several emerging technologies are using image recognition to automate laborious tasks such as facade inspections, progress tracking, and surveying. In fact, 45% of BOOST 4 applicants, and almost all chosen participants, note AI as a core feature of their products.


Having said that, AI is unlikely to replace construction professionals anytime soon. Many industry reports rank construction at the bottom of the pack when it comes to AI impact1 and, while we believe this impact will be large, we foresee AI working alongside construction professionals to reduce drudgery and drive productivity instead of displacing workers. AI will serve as a co-pilot to automate back-office tasks, prompt contractually driven actions during a project, and easily serve up information when and where it is needed. The differentiation for AI-enabled applications will be centered around the details and timing of inputs and outputs – AI layers that easily integrate into existing systems and processes will be the quickest and easiest for the industry to adopt.


Supply Chain Efficiency

Construction input costs have increased by an average of 26% in 2021 and 2022 due to factors that include lack of transparency throughout the supply chain and delays caused by macroeconomic disruptions such as COVID-192. With limited options available for reducing the cost of raw materials, construction firms are turning to new technologies to help them track the movement of materials, monitor inventory levels, optimize procurement processes, and reduce material waste, ultimately leading to smoother operations and cost savings. For example, AGORUS is utilizing AI-enabled software and robotics to precisely cut and assemble customized timber members of buildings to be installed rapidly on the jobsite, ultimately reducing assembly time, and mitigating costly waste.


We believe the lack of visibility throughout the supply chain can be addressed with technological solutions. General contractors and developers can increasingly leverage software solutions to capitalize on once hard-to-find purchasing power and begin purchasing larger ticket items, such as electrical and mechanical equipment. Other solutions are empowering the offsite tracking and management of materials. For instance, KayaAI has been building tools to integrate AI-driven visibility into our ecosystems’ pre-existing processes and increase lead time visibility on construction projects.


Informed Sustainability

In an era when sustainable business practices are increasingly becoming a competitive advantage, construction firms are exploring how they can address sustainability challenges and transparently communicate their impact. No matter what path firms choose, the first step will be measuring and reporting on various sustainability metrics to demonstrate commitment to sustainable development and meet the demands of stakeholders, regulators, and the broader community. Helping companies navigate the first step are companies such as Emidat. Emidat helps building material manufacturers easily create and distribute environmental product declarations (EPDs), the foundational impact data for embodied carbon stakeholders can leverage to make informed decisions.


The ability to establish industry-wide sustainability baselines will drive the implementation of new processes and methodologies that can power continuous improvements that reduce the built world’s environmental footprint. Metadata collection and aggregation are critical in the coming years as the U.S. slowly, but surely, adopts and pushes for increased reporting and visibility into the materials and processes used to build. There are two key challenges that this new wave of regulations will present for commercial real estate owners: 1) Getting access to reliable and trusted data, which is most often found at the source (such as manufacturers and producers), but also the most difficult to access, and 2) Helping decision-makers across the value chain prioritize the best ROI solutions when it comes to reducing their impact.


Field-focused Digitization

We are excited to increasingly observe technology tools catching hold with a ‘bottom up’ approach, where adoption starts with superintendents and project managers, rather than a centralized innovation team. The ‘top down’ approach to design, project management, building information model (BIM) creation, and reporting has enabled the industry to set standards, adopt new technologies, enforce consistency, ensure back-office efficiency, and drive continuous improvement in enterprise-wide programs and standard operating procedures. In contrast, the ‘bottom up’ adoption promises to streamline workflows and increase productivity in the field, empower frontline professionals to address challenges with data at their fingertips, and address root causes of project delays and cost overruns.


To reap the full benefits of a streamlined, real-time workflow, the perpetual dissonance between BIM and field updates needs to be solved – a gap Sitelink is trying to address with their AR-powered field app. Their solution was built to enhance collaboration for construction teams by bringing BIM to the jobsite. This explosion of field technology coincides with demographic trends we expect to gain momentum in the coming decade. As more than half of the current labor force phases out of the skilled trades, we expect tech-enabled efficiency gains to become more critical and demanded by the workforce, incentivizing network effects rather than forcing outdated tools on individuals in the field.


Design Optimization

As building designs and code complexity increase, optimizing the time that it takes to create design and construction documents in 2D, and 3D has become a focus for design and construction professionals – and a great seeding ground of many tech companies. With added complexity, the time and effort required from professionals to generate a valid, code-compliant set of drawings has increased tremendously. One way to accelerate the production of these documents is assisting with reality capture of existing site conditions, which helps to not only speed up the design process, but also avoids unexpected problems in the future. This has become especially relevant for project starts. Having accurate information from the outset reduces requests for information in-field, minimizes rework, and streamlines the schedule. Sub-surface mapping solutions, such as the one being developed by Exodigo, can provide a clear picture of the underground, informing partners where to design and build safely with a high level of predictability, and doing so faster and more efficiently than existing intrusive methods.


There are rich opportunities for optimizing design beyond project starts as well. Other solutions focus on AI and automation of certain repetitive design tasks. Today, designs are often created from scratch, rather than leveraging institutional knowledge accumulated through previous projects. Thankfully, pulling in previous details and specs from similar projects from the past is becoming easier with today’s tools, helping architects be more productive with their time. Furthermore, the ability for multiple architects to simultaneously collaborate on a drawing set has circumvented the need for downloading or sharing large file formats, avoiding previously disjointed workflows. With so many components to design, such as balancing aesthetic considerations with functionality, sustainability, and cost-efficiency, technologies that enable a more informed, collaborative design process can meaningfully affect change in the industry.


Workforce Productivity

Workforce productivity stands at the core of the AECO industry’s success and profitability. In an environment where the cost of materials and labor are increasing, optimizing the performance of the construction workforce is critical. From skilled laborers to engineers to project managers to back-office functional roles, harnessing the full potential of human resources is not only essential for meeting deadlines and staying within budget, but also for ensuring the safety and quality of construction projects.


Many startups are addressing issues of productivity in the AECO space. For example, Hammr identified an urgent need among SMB contractors through their social media community (the “Bred to Build” podcast) and addressed those needs by building a tool for automating back-office processes. Other early-stage startups are looking at ways to improve workforce productivity by focusing on the field, solving challenges related to training and upskilling the workforce or aligning pay incentives on the jobsite. Trunk Tools addresses the skilled labor shortage in construction by creating easy to use tools for the deskless workforce, including AI-driven superintendent bots that help answer on-site questions and task-based incentives to drive productivity. With better tools in the field and in the back-office, productivity of the jobsite will increase over time.


What Comes Next

The seven startups selected to participate in the BOOST 4 program spent six weeks working with Suffolk Technologies throughout October and November. The BOOST program allowed them to explore and define new use cases within AECO and refine their products and go-to-market strategies. More than half of all BOOST participants have piloted their technology on Suffolk jobsites and many are also exploring pilots with our Operating Partners including Axiom Builders, Holcim, Sellen Construction, and Century Drywall.


If you are interested in learning more about the BOOST program or becoming involved in the future, please reach out to [email protected] and a member of our team will be in touch.


This year, BOOST is presented in partnership with 22 industry partners including Group Amana, Autodesk, ARCO Murray, Axiom Builders, Century Drywall, Feldman Geospatial, Gunderson Dettmer, Holcim, JLL Spark, Liberty, Liberty Mutual, LMRE, McCusker-Gill, The Martin Trust Center for MIT Entrepreneurship, Moog Construction, Procore, Sellen Construction, Suffolk, Suffolk Design, Swire Properties, Thornton Tomasetti, and Zwick Construction.

Man wearing backpack standing on urban street with construction illuminated on either side.

In construction, it sometimes feels like stakeholders put as much effort into shoring themselves up against lawsuits as they do designing and constructing. It’s not that people in the industry don’t want to closely collaborate— they do. People from across the industry collaborate on a daily basis. But the fact remains that the structure of the construction industry works against stakeholders working together effectively. The industry is fractured into so many tiny pieces that the incentive alignment is often out of whack.


It’s a problem that we believe can be meaningfully addressed with the aid of the right technology.


First, let’s lay out the scope of the problem. Construction is a gigantic industry, accounting for 4.2% of the United States GDP and generating more than $2.6 trillion annually. But unlike other industries of similar size, it’s highly fragmented. The top four firms in the U.S. construction sector control just 6% of the market, whereas the top four in retail control 14%, and in petrochemical refining control 42%. 


Doing work in the built world requires coordination and collaboration with a number of different stakeholders: developers, architects, engineers, general contractors, subcontractors, lenders, and owners. Often these various stakeholders are at odds with each other, trying to offload their risk. As a result, individual incentives don’t always push stakeholders towards transparency with one another and efficiency as a whole suffers.


But the challenges don’t end there, because even when different stakeholders want to share information, it’s difficult to do so because the data is trapped in digital silos or, even worse, paper-based documents. As a result, a lot of work is unnecessarily duplicated by different stakeholders because they cannot … or will not … share information.


Plus, for complex reasons that we explore in more detail in our post on AI and Automation, the construction industry as a whole has historically been reluctant to adopt new technologies, resulting with projects worth tens of millions of dollars relying on paper-driven processes and general purpose software such as email and spreadsheets. Given the limited specialized tooling, information gets buried in endless email threads, and spreadsheets grow into complicated monsters that only a few select specialists within the organization can understand, much less share with others. 


Technology as a Bridge


Fragmentation won’t go away any time soon, but that doesn’t mean the industry can’t become more transparent and efficient. If you can unlock and share clean, useful data between stakeholders, collaboration and efficiency will increase. This means not only that the industry should replace paper-based processes with digital ones, but that data needs to be reliable, normalized, and readily available across applications.


Connecting our industry will reduce the amount of manual data entry, which will both reduce cost and increase accuracy. The ability to easily share information will also reduce the duplication of work. And, perhaps most importantly, the ability to share information easily will help align stakeholders along the vertical process chain. From architects to contractors, engineers, and owners, it needs to be easier and less risky to work together efficiently and effectively to create the built world. The industry desperately needs technologies that facilitate working together to overcome challenges.


Suffolk Tech sees technology as a bridge to get the industry to more transparency. We’re investing in platforms that help realign incentives, make it simple to share data to create a single version of the truth and ultimately, encourage closer collaboration and transparency among all stakeholders in construction. Specifically, here are the primary technologies we believe will improve collaboration and transparency in the industry:


  • Data layers provide an efficient means of establishing and propagating a single version of the truth, enabling everyone to be on the same page about the state of a project.
  • Marketplaces provide transparency so stakeholders can compare price, quality, and availability to make purchasing more efficient, less expensive and more effective.
  • Fintech solutions help simplify the process of financing work in the built world, managing the high levels of complexity and risk. Technologies that make the process easier and more transparent will enable projects to get started faster and stakeholders to get paid sooner. 
  • Automation of workflows, data entry, and other tasks can eliminate much of the duplicate work that wastes so much time and effort.
  • IoT is a mature technology that can measure the built world in real time and in exquisite detail to provide clear data to stakeholders across the value chain.


Companies that are Connecting the Industry


Here are two examples of the kinds of companies realigning incentives, increasing transparency, and connecting the built world.


Kojo makes a procurement platform for construction, starting with mechanical, electrical, and plumbing trades. Typically, construction organizations source and purchase materials via the phone and over email, often relying on paper-based invoices and payment systems. All of this is typically tracked in giant spreadsheets. With Kojo, organizations can plan, purchase, track, receive and pay for materials from a single platform, comparing many different vendors to get the best price and quality.


Pulley addresses a different issue that’s a huge headache throughout construction, permitting. It’s a huge bottleneck, because each local government has a different set of processes and requirements to obtain the proper permits to start work on a project. Information is not simple to find, and multiple stakeholders typically have to collaborate on applications. Pulley builds thousands of local permit requirements into workflows that serve up the required tasks to the right people across stakeholders. It automates task assignments, streamlines submissions, and enables organizations to manage documents. As a result, governments, architects, developers and other stakeholders can effectively collaborate to expedite permitting, because everyone knows exactly what’s required of them to move the process forward. 


Given the broad scope of our industry, construction will always be fragmented to some degree. But the current state of the industry’s poorly aligned incentives and fragmented workflows are facing tremendous pressure to change. Technology is the future, because it can increase transparency, make information sharing effortless, automate workflows and, ultimately, help align incentives so stakeholders can work together more effectively and efficiently. We for one are looking forward to welcoming this new reality soon.


If you’re building a startup that addresses these or other pressing issues in the built environment, please reach out to our team.